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The spontaneous emission rate of two interacting excited atoms near a dielectric interface is studied using
the photon closed-orbit theory and the dipole image method. The total emission rate of one atom during the
emission process is calculated as a function of the distance between the atom and the interface. The results
suggest that the spontaneous emission rate depends not only on the atomic-interface distances, but also on
the orientation of the two atomic dipoles and the initial distance between the two atoms. The oscillation
in the spontaneous emission rate is caused by the interference between the outgoing electromagnetic wave
emitted from one atom and other waves arriving at this atom after traveling along various classical orbits.
Each peak in the Fourier transformed spontaneous emission rate corresponds with one action of photon
classical orbit.
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The spontaneous emission properties of atoms in en-
vironments have been studied in detail both theoreti-
cally and experimentally. Using quantum electrodynam-
ics method, Urbach et al. calculated the spontaneous
emission rate of an atom near a nonabsorbing dielectric
film[1,2]. Later, Wang et al. studied the spontaneous
emission properties of an assembly of atoms in symmet-
ric and asymmetric slabs[3,4]. Since the oscillation in the
spontaneous emission rate of an atom is quite similar to
the oscillation in the atomic absorption spectra[5], Du et

al. extended the concepts of the closed-orbit theory from
electron to photon and provided a general framework to
understand the oscillations in the spontaneous emission
rate for atoms in the environment. They calculated the
spontaneous emission rate of an atom near an dielectric
interface and inside a dielectric slab[6−8]. It has been
demonstrated that the oscillations in the spontaneous
emission rate are associated with the photon closed orbits
going away from and returning to the emitting atom and
are interpreted as interferences between outgoing emit-
ted electromagnetic wave and returning electromagnetic
wave traveling along different closed orbits. Recently,
the spontaneous emission of two excited atoms in envi-
ronments has attracted much attention. It is expected
that the electromagnetic interaction between two excited
atoms will be substantial when they are located within
the effective mode diameter while the interaction will be
weak when they are far apart. Aiello et al. have studied
this problem in terms of the spontaneous decay of one of
the two dipoles and found an expression for the mutual
interaction including correct retardation times to repre-
sent the multiple reflections between the cavity mirrors[9].
Later, Takada et al. analyzed the spontaneous emission
by two atoms in a planner microcavity under the dipole
approximation and the rotation wave approximation[10].
In these earlier studies, the two atoms are all considered
to belocated on the central line of the cavity so that the
two atomic dipoles are parallel. As to other orientation
of the dipoles, the researchers did not give a discussion.
In this letter, by using the photon closed-orbit theory

and the dipole image method, we give a vivid physical
description and an exact formula about the spontaneous
emission of two excited atoms near a dielectric interface
for different orientations of the dipoles, and especially
discuss the influence of the photon classical orbits on the
spontaneous emission rate.

The schematic of the system is shown in Fig. 1. Two
semi-infinite nonabsorbing dielectric materials with real
refractive indices n1 and n2, respectively, form a single
plane interface. It is assumed that the medium is laid
on the xy plane and the normal of the medium is chosen
as the z direction. The two excited atoms 1 and 2 are
located near the interface. They are two-level atoms of
the same transition frequency ω0 and the same dipole
moment magnitude d0, but with different dipole mo-
ment directions. The distances from these two atoms to
the interface are l1 and l2, respectively. The horizontal
distance between the two atoms is denoted as r0. 1′ and
2′ are the mirror images of atoms 1 and 2.

The physical picture for the spontaneous emission pro-
cess of this system can be described by using the photon
closed-orbit theory. For the case of two identical atoms,

Fig. 1. Two atoms near a dielectric interface.
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the electromagnetic wave emitted by the interacting atom
is also very important. Some of the electromagnetic wave
will propagate directly from the second atom to the first
one and others will be reflected by the dividing inter-
face and return to the first atom. The interference effect
between these electromagnetic waves emitted from the
second atom and the outgoing waves emitted from the
first atom also produces the oscillation in the sponta-
neous emission rate.

Since the spontaneous emission for an excited atom can
be modeled as a dipole interaction with the electrical field
at the location of the atom, we use the radiation damping
of a dipole antenna to simulate the spontaneous emission
of the atom. Suppose the transition dipole moments of

the two atoms are ~d1 = ~d10e
−iω0t, ~d2 = ~d20e

−iω0t, where
ω0 is the frequency of the oscillation and d10 = d20. The
radiation damping rate for one dipole antenna can be
written as[11]

W =
ω0

2U
Im(~d∗ · ~E), (1)

where U is the energy of the antenna, ~d∗ is the complex

conjugate of the dipole moment ~d of the atom, and ~E
is the electric field at the position of the dipole antenna.

For a single atom near an interface, ~E can be decomposed

into a direct part ~E0 and a returning part ~Eret. While for
two interacting atoms, besides the above two parts, the

electric field ~E21 caused by the interacting atom is also
very important. In the following, we take the atom 1 as
an example and derive its spontaneous emission rate in
front of an interface.

Using ~r to denote the vector of a point relative to the
dipole position of the atom 1, the direct electric field is

~Edir
1 =

d1k
3

4πε

{
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(

1

kr

)
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i
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(kr)3

)

}

ei(kr−ω0t), (2)

where ε is the dielectric index and k is the wave number.
If the dipole antenna of the atom 1 is at a distance l1
from the interface and is parallel to the interface, ~Eret

1
can be seen as the electric field emitted from its mirror
dipole 1′ and can be written as

~Eret
1 = −

~d1k
3

4πε
R0

(

1
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i
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1

(2kl1)3

)

ei(2kl1−ω0t), (3)

where R0 is the reflecting coefficient of the interface for
the case of normal incidence.

The electric field ~E21caused by the atom 2 is also com-
posed of two parts, one is the direct part and the other
is the reflecting one caused by the interface. Using ~r1

to denote the vector from the atom 2 to the atom 1 and
supposing that the dipole moments of the two atoms are

parallel, the direct electric field from the atom 2 to the
atom 1 can be written as

~Edir
21 =
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·

ei(kr1−ω0t), (4)

where α is the angle between ~r1 and the electric dipole

moment ~d1. The reflecting electric field ~Eret
21 can be cal-

culated by using the dipole image method. It can be seen
as the electric field emitted from its mirror image 2′. Us-
ing ~r2 to denote the vector from the mirror image 2′ to

the atom 1, ~Eret
21 can be written as

~Eret
21 = −

d2k
3

4πε
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where θ is the incident angle of the electric field emitted
from atom 2; R is the reflecting coefficient for the case
of oblique incidence, which depends on the refractive in-
dices n1 and n2, and the incident angle θ[12].

Therefore, the whole electric field acting on the posi-
tion of the atom 1 can be described as the sum of the
above four parts:

~E = ~Edir
1 + ~Eret

1 + ~Edir
21 + ~Eret

21 . (6)

By substituting Eq. (6) into Eq. (1), the damping rate
for the first dipole near an interface can be written as

W // = W0 + W ret
1 + W dir

21 + W ret
21 , (7)

where W // denotes the spontaneous emission when the
dipole moments of the two atoms are parallel. W0 =
nWvac, where Wvac is the spontaneous emission rate of
an atom in the vacuum[7], n is the refractive index of the
medium, which equals n1 or n2; W ret

1 is the spontaneous
emission rate caused by the returning electric field Eret

1
of the atom 1:
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1 = −
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2
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]

; (8)

W dir
21 is the spontaneous emission rate caused by the di-

rect electric field Edir
21 of the atom 2:
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21 =
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2
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; (9)
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W ret
21 is the spontaneous emission rate induced by the

returning electric field Eret
21 of the atom 2:
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. (10)

In Eqs. (8)−(10), k0 is the wave number of the emitted
light in vacuum.

If the electric dipole moment of the atom 2 is anti-
parallel to the atom 1, by using the same method, the
spontaneous emission rate can be described as

W
//
anti = W0 + W ret

1 − W dir
21 − W ret

21 . (11)

For the case that the electric dipole moment of the
atom 2 is perpendicular to that of the atom 1, the elec-

tric field ~E21 caused by the atom 2 can be written as
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The reflecting electric field ~Eret
21 can be described as
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The spontaneous emission rate of the atom 1 in front of
an interface can be written as

W⊥ = W0 + W ret
1 + W dir⊥

21 + W ret⊥
21 , (14)

in which
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In the above equations, 2nk0l1 is the action of the emit-
ted photon going from the atom 1 to the interface and

reflected back to the atom 1. This path forms a closed
orbit. nk0r1 is the action of the emitted photon going
directly from the atom 2 to the atom 1, and nk0r2 is the
action of the emitted photon going from the atom 2 to
the interface and reflecting back to the atom 1. These
two paths form two open classical orbits.

In our calculation, we take the wavelength of the emit-
ted photon in vacuum as λ0 = 510 nm and k0 = 2π/λ0.
The first dielectric medium is made up with the poly
methyl methacrylate (PAMA) material with the refrac-
tive index n1 = 1.49, and the second medium is the
vacuum with n2 = 1.0[7]. The two atoms are located in
the first medium. Thus n = n1 in the spontaneous emis-
sion rate formula. Firstly, we calculate the spontaneous
emission rate of the first atom without considering the
interaction of the second atom, see the dotted lines in
Figs. 2−4. Then we calculate the total emission rate of
this atom considering the influence of the second atom.
Suppose the electric dipole moment of the first atom is
parallel to the interface and the electric dipole moment
of the atom 2 is parallel to that of the atom 1. Figure 2
shows the spontaneous emission rate when the horizontal
distance between the two atoms is zero (r0 = 0), i.e., they
are located on the z axis. We keep the atom 2 fixed and
move the atom 1 slowly along the z axis. The distances
between the atom 2 and the interface are 2.0λ0 and 5.0λ0.
From this figure, we find that compared with the case of
one single atom near an interface[7], the oscillating ampli-
tude in the spontaneous emission rate becomes increased.
When the atomic-interface distance l2 is small, the spon-
taneous emission rate of the atom 1 becomes weakened
with the increase of the distance l1. In each plot, when
l1 is close to l2, the amplitude becomes increased. At
l1 = l2, there appears a resonance structure. This is
caused by the constructive interference of the electric
field emitted from the two dipoles. Figure 3 shows the
spontaneous emission rate when the horizontal distance
between the two atoms is r0 = 0.25λ0. The oscillating
structure of the spontaneous emission rate is the same
as Fig. 2. But the amplitude of the oscillation becomes
decreased. Figure 4 shows the spontaneous emission rate
of the atom 1 when r0 = 4.0λ0 and l2 = 5.0λ0. The
amplitude of the oscillation decreases greatly. The total
emission rate oscillates around W0. From this figure, we
find that when l1 < l2, the influence of the atom 2 is
little and the total spontaneous emission rate of atom 1 is

Fig. 2. Spontaneous emission rate of the atom 1 near the in-
terface when the electrical dipole moments of the two atoms
are parallel. The horizontal distance of the two atoms is r0

= 0. The distances between the atom 2 and the interface are
(a) l2 = 2.0λ0 and (b) l2 = 5.0λ0. The solid lines are the
total emission rates of atom 1 including the influence of the
atom 2 while the dotted lines are the emission rates without
considering the mutual interaction of the two atoms.
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nearly the same as the case that there is only one atom.
But when l1 > l2, the influence of the second atom be-
comes significant. The main contribution to the emission
rate comes from the direct part W dir

21 of the second atom.
Next, we calculate the spontaneous emission rate when

the two atomic dipoles are anti-parallel, as shown in
Figs. 5 and 6 for different horizontal distances between
the two atoms of r0 = 0 and r0 = 0.25λ0, respectively.
From these two figures, we find that when l1 is around
l2, the oscillation becomes strengthened. But as l1 = l2,
the emission rate W dir

21 caused by the direct part of the
atom 2 is of the order of −W0, which cancels out the
background emission rate. Therefore, the whole emission
rate is the smallest. This is caused by the destructive
interference of the electric field emitted from the two
dipoles.

Thirdly, we calculate the spontaneous emission rate
when the electric dipole moment of the atom 2 is per-
pendicular to that of the atom 1. Under this condition,
when the horizontal distance between the two atoms is
zero (r0 = 0), then α = 0◦ and θ = 0◦. The spontaneous
emission rate is the same as the case that there is only
one atom. But when r0 6= 0, the influence of the atom
z becomes important. Figure 7 shows the spontaneous
emission rate when the horizontal distance r0 = 0.25λ0.
The distances between the atom 2 and the interface are
2.0λ0 and 5.0λ0. Compared with the parallel case, the
oscillation in the spontaneous emission rate becomes de-
creased. When the two atoms are far from each other,
the influence of the atom 2 can be neglected. But as l1
is close to l2, due to the direct influence of the atom 2,
the oscillation becomes strong. Around l1 = l2, there is
a peak and a valley.

In order to show the correspondence between the

Fig. 3. The same as Fig. 2 except that the horizontal dis-
tance between the two atoms r0 is 0.25λ0. (a) l2 = 2.0λ0, (b)
l2 = 5.0λ0.

Fig. 4. The same as Fig. 2 except that the horizontal distance
between the two atoms r0 is 4.0λ0. The distance between the
atom 2 and the interface is l2 = 5.0λ0.

oscillation in the spontaneous emission rate with the pho-
ton classical orbits, we make a Fourier transform (FT)
to the spontaneous emission rate. We use a dimension-
less variable γ to measure the system size relative to
a standard one. The standard distance l0 between the
atom and the interface is taken as the wavelength of the
emitted photon in vacuum, l0 = λ0. For simplicity, we
only consider the case that the two distances between
the atoms and the interface are equal. The real distances
between the atoms and the interface can be written as
l1 = l2 = γl0. The horizontal distance between the two
atoms is r0 = γl0.

We define the FT spontaneous emission rate as

W (S) =

∫ γ2

γ1

W − W0

W0
exp(−iγS)γdγ. (17)

In our calculations, we take γ1 = 0.5, γ2 = 16, and
∆γ = 0.01.

Figure 8(a) shows the Fourier transformed emission
rate of atom 1 when the electric dipole moments of the
two atoms are parallel to each other. There are three
peaks in this plot and each peak corresponds to one
photon classical orbit. In our present problem, for the
excited atom 1, there is only one closed orbit of the
emitted photon, which goes out from the atom, and then
is reflected by the interface, and finally returns to the
emitting atom 1. The action for this closed orbit is
S1 = 2n1k0l1 = 4πn1γ. For the standard system size γ =
1, S1 = 18.72. Therefore, this closed orbit corresponds
to the second peak in the Fourier transformed emission
rate. Besides this closed orbit, there are two short clas-
sical orbits. The first photon classical orbit is emitted
from the atom 2 and propagates directly to the atom
1. The action of this orbit is S2 = n1k0r1 = 9.36,
which corresponds to the first peak in the Fourier

Fig. 5. Spontaneous emission rate of the atom 1 when the
electric dipole moment of the atom 2 is anti-parallel to that
of the atom 1. The horizontal distance between the two atoms
is r0 = 0. The distances between the atom 2 and the interface
are (a) l2 = 2.0λ0 and (b) l2 = 5.0λ0.

Fig. 6. The same as Fig. 5 except that the horizontal dis-
tance between the two atoms r0 is 0.25λ0. (a) l2 = 2.0λ0, (b)
l2 = 5.0λ0.
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Fig. 7. Spontaneous emission rate of the atom 1 when the
electric dipole moment of the atom 2 is perpendicular to that
of the atom 1. The horizontal distance between the two atoms
is r0 = 0.25λ0. The distances between the atom 2 and the in-
terface are (a) l2 = 2.0λ0 and (b) l2 = 5.0λ0.

Fig. 8. Fourier transformed spontaneous emission rate of the
atom 1. (a) The electric dipole moments of the two atoms
are parallel to each other; (b) the electric dipole moments of
the two atoms are perpendicular to each other. The corre-
sponding photon classical orbits and the action of the orbits
are shown beside each peak.

transformed emission rate. The second photon classi-
cal orbit is emitted from the atom 2 and propagates
towards the interface; after reflected by the interface,
it returns to the atom 1. The action of this orbit is
S3 = n1k0r2 = 20.95, which corresponds to the third
peak in the Fourier transformed emission rate. Figure
8(b) shows the Fourier transformed emission rate when

the electric dipole moments of the two atoms are perpen-
dicular to each other. There are two peaks in this plot.
One corresponds to the photon closed orbit with the ac-
tion S=18.72, and the second peak corresponds to the
second photon classical orbit as described above, whose
action is S=20.95. Under this condition, the direct spon-
taneous emission rate W dir

21 caused by the second atom is
zero, therefore the influence of the first classical orbit
disappears.

In conclusion, we have derived a formula for the spon-
taneous emission rate of two interacting atoms near a di-
electric interface by using the photon closed-orbit theory
and the dipole image method. Compared with the case of
only one atom, the oscillation in the spontaneous emis-
sion rate of two interacting atoms becomes much more
complex. The results suggest that the spontaneous emis-
sion rate of two interacting atoms not only depends on
the distance between the atoms and the interface, but
also depends on the orientations of the two electric dipole
moments of the atoms. Besides, the horizontal separa-
tion of the two atoms also plays an important role. The
study suggests that the oscillations in the spontaneous
emission rate are caused by the interference between the
outgoing emitted electromagnetic wave and other waves
traveling along various classical orbits. We hope that our
results will be useful in guiding the experimental study
of the spontaneous emission rate of two atoms near an
interface and in a microcavity structure[13].
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